Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Present-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected. In an aging population, age-associated drug toxicity is another key area of focus as the majority of patients on medication are older. Therefore, with an aging population possessing subtle or even more dramatic individual differences in mitochondrial function, there is a growing necessity to identify and understand early on potentially significant drug-associated off-target effects and toxicity issues. This will not only reduce the number of unwanted side effects linked to mitochondrial toxicity but also identify useful mitochondrial-modulating agents. Mechanistically, many successful drug classes including diabetic treatments, antibiotics, chemotherapies and antiviral agents have been linked to mitochondrial targeted effects. This is a growing area, with research to repurpose current medications affecting mitochondrial function being assessed in cancer, the immune system and neurodegenerative disorders including Parkinson's disease. Here, we review the effects that pharmacological agents have on mitochondrial function and explore the opportunities from these effects as potential disease treatments. Our focus will be on cancer treatment and immune modulation.</jats:p>

Original publication

DOI

10.1042/bst20190280

Type

Journal article

Journal

Biochemical Society Transactions

Publisher

Portland Press Ltd.

Publication Date

20/12/2019

Volume

47

Pages

1757 - 1772