Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mitochondrial DNA (mtDNA) is almost entirely maternally inherited. Thousands of copies of mtDNA are present in every nucleated cell and in most normal individuals these are virtually identical (homoplasmy). mtDNA diseases may be caused by mutations in either mitochondrial or nuclear genes and, hence, give rise to maternal or autosomal patterns of inheritance. Antenatal diagnosis of mitochondrial diseases based on chorionic villous sampling is available for Mendelian disorders and the syndromes caused by mutations at bp 8993 (associated with Leigh's syndrome and neurogenic weakness, ataxia and retinitis pigmentosa (NARP)). However, prenatal diagnosis of many other maternally inherited mtDNA diseases is less reliable because it is not possible to predict with confidence the way in which heteroplasmic mtDNA mutations segregate within tissues and find clinical expression. This review focuses on the substantial progress in genetics that has been made recently, and on the management options that clinicians can offer to families.


Journal article



Publication Date





751 - 755


Animals, DNA, Mitochondrial, Extrachromosomal Inheritance, Female, Genetic Counseling, Humans, Mice, Mitochondria, Mitochondrial Diseases, Models, Animal, Mutation, Oocytes, Oogenesis, Prenatal Diagnosis