Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mice that lack the mitochondrial form of superoxide dismutase (SOD2) incur severe pathologies and mitochondrial deficiencies, including major depletion of complex II, as a consequence of buildup of endogenous reactive oxygen species (Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A. S., Zastawny, T. H., Dizdaroglu, M., Goodman, S. I., Huang, T. T., Miziorko, H., Epstein, C. J., and Wallace, D. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 846-851 and Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C., and Epstein, C. J. (1995) Nat. Genet. 11, 376-381). These problems can be greatly attenuated or rescued by synthetic antioxidant treatment, such as with the catalytic antioxidant EUK189 (Hinerfeld, D., Traini, M. D., Weinberger, R. P., Cochran, B., Doctrow, S. R., Harry, J., and Melov, S. (2004) J. Neurochem. 88, 657-667). We have used heart mitochondria from sod2 null mice to better understand mitochondrial reactive oxygen species production both in the absence of SOD2 and following in vivo antioxidant treatment. Isolated heart mitochondria from 5-day-old sod2 null animals respiring on the complex II substrate succinate exhibited statistically significant higher levels of mitochondrial O2* (157%, p < 0.01) but significantly less H2O2 (33%, p < 0.001) than wild type littermates. Treatment of sod2 nullizygous mice with EUK189 proportionately increased the levels of complex II and H2O2. Increased production of O2* resulting from complex II normalization had no effect on steady state levels due to the rapid conversion to H2O2, a process presumably aided by the presence of the EUK189, an SOD mimetic.

Original publication




Journal article


J Biol Chem

Publication Date





3354 - 3359


Animals, Antioxidants, Catalysis, Ethidium, Genotype, Hydrogen Peroxide, Immunoblotting, Mice, Mice, Transgenic, Mitochondria, Mitochondria, Heart, Organometallic Compounds, Oxazines, Oxidative Stress, Oxygen, Reactive Oxygen Species, Salicylates, Submitochondrial Particles, Superoxide Dismutase, Superoxides