Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Less than 50% of ovarian cancers respond to paclitaxel. Effective strategies are needed to enhance paclitaxel sensitivity. METHODS: A library of silencing RNAs (siRNAs) was used to identify kinases that regulate paclitaxel sensitivity in human ovarian cancer SKOv3 cells. The effect of dasatinib, an inhibitor of Src and Abl kinases, on paclitaxel sensitivity was measured in ovarian cancer cells and HEY xenografts. The roles of p27(Kip1), Bcl-2, and Cdk1 in apoptosis induced by dasatinib and paclitaxel were assessed using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, siRNA knockdown of gene expression, transfection with Bcl-2 and Cdk1 expression vectors, and flow cytometry. All statistical tests were two-sided. RESULTS: Src family and Abl kinases were identified as modulators of paclitaxel sensitivity in SKOv3 cells. The siRNA knockdown of Src, Fyn, or Abl1 enhanced paclitaxel-mediated growth inhibition in ovarian cancer cells compared with a control siRNA. HEY cells treated with dasatinib plus paclitaxel formed fewer colonies than did cells treated with either agent alone. Treatment of HEY xenograft-bearing mice with dasatinib plus paclitaxel inhibited tumor growth more than treatment with either agent alone (average tumor volume per mouse, dasatinib + paclitaxel vs paclitaxel: 0.28 vs. 0.81 cm3, difference = 0.53 cm3, 95% confidence interval [CI] = 0.44 to 0.62 cm3, P = .014); dasatinib + paclitaxel vs. dasatinib: 0.28 vs. 0.55 cm3, difference = 0.27 cm3, 95% CI = 0.21 to 0.33 cm3, P = .035). Combined treatment induced more TUNEL-positive apoptotic cells than did either agent alone. The siRNA knockdown of p27(Kip1) decreased dasatinib- and paclitaxel-induced apoptosis compared with a negative control siRNA (sub-G1 fraction, control siRNA vs. p27(Kip1) siRNA: 42.5% vs. 20.1%, difference = 22.4%, 95% CI = 20.1% to 24.7%, P = .017). Studies with forced expression and siRNA knockdown of Bcl-2 and Cdk1 suggest that dasatinib-mediated induction of p27(Kip1) enhanced paclitaxel-induced apoptosis by negatively regulating Bcl-2 and Cdk1 expression. CONCLUSION: Inhibition of Src family and Abl kinases with either siRNAs or dasatinib enhances paclitaxel sensitivity of ovarian cancer cells through p27(Kip1)-mediated suppression of Bcl-2 and Cdk1 expression.

Original publication

DOI

10.1093/jnci/djr280

Type

Journal article

Journal

J Natl Cancer Inst

Publication Date

21/09/2011

Volume

103

Pages

1403 - 1422

Keywords

Animals, Antineoplastic Agents, Apoptosis, CDC2 Protein Kinase, Caspase 3, Cell Line, Tumor, Cell Proliferation, Confounding Factors (Epidemiology), Cyclin-Dependent Kinase Inhibitor p27, Dasatinib, Drug Synergism, Female, Flow Cytometry, Fluorescent Antibody Technique, Gene Expression Regulation, Neoplastic, Genes, bcl-1, Humans, Immunoblotting, Immunoprecipitation, In Situ Nick-End Labeling, Mice, Mice, Nude, Ovarian Neoplasms, Paclitaxel, Phosphorylation, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-abl, Pyrimidines, RNA, Messenger, RNA, Small Interfering, Research Design, Reverse Transcriptase Polymerase Chain Reaction, Serine, Thiazoles, Threonine, Tyrosine, Xenograft Model Antitumor Assays, src-Family Kinases