Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Endometriosis is a debilitating disease characterized by the growth of ectopic endometrial tissue. It is widely accepted that angiogenesis plays an integral part in the establishment and growth of endometriotic lesions. Recent data from a variety of angiogenesis-dependent diseases suggest a critical role of bone marrow-derived endothelial progenitor cells (EPCs) in neovascularization. In this study we examined the blood levels of EPCs and mature circulating endothelial cells in a mouse model of surgically induced endometriosis. Fluorescence-activated cell sorting analysis revealed elevated levels of EPCs in the blood of mice with endometriosis compared with control subject that underwent a sham operation. EPC concentrations positively correlated with the amount of endometriotic tissue and peaked 1 to 4 days after induction of disease. In a green fluorescent protein bone marrow transplant experiment we found green fluorescent protein-positive endothelial cells incorporated into endometriotic lesions but not eutopic endometrium, as revealed by flow cytometry and immunohistochemistry. Finally, treatment of endometriosis-bearing mice with the angiogenesis inhibitor Lodamin, an oral nontoxic formulation of TNP-470, significantly decreased EPC levels while suppressing lesion growth. Taken together, our data indicate an important role for bone marrow-derived endothelial cells in the pathogenesis of endometriosis and support the potential clinical use of anti-angiogenic therapy as a novel treatment modality for this disease.

Original publication

DOI

10.1016/j.ajpath.2010.12.037

Type

Journal article

Journal

Am J Pathol

Publication Date

04/2011

Volume

178

Pages

1782 - 1791

Keywords

Administration, Oral, Angiogenesis Inhibitors, Animals, Bone Marrow Transplantation, Cell Separation, Cyclohexanes, Disease Models, Animal, Endometriosis, Endothelial Cells, Female, Flow Cytometry, Green Fluorescent Proteins, Immunohistochemistry, Mice, Mice, Inbred C57BL, Sesquiterpenes, Stem Cells, Up-Regulation