Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Human regulatory T cells (Treg) offer an attractive adjunctive therapy to reduce current reliance on lifelong, nonspecific immunosuppression after transplantation. Here, we evaluated the ability of ex vivo expanded human Treg to prevent the rejection of islets of Langerhans in a humanized mouse model and examined the mechanisms involved. METHODS: We engrafted human pancreatic islets of Langerhans into the renal subcapsular space of immunodeficient BALB/c.rag2(-/-).cγ(-/-) mice, previously rendered diabetic via injection of the β-cell toxin streptozocin. After the establishment of stable euglycemia, mice were reconstituted with allogeneic human peripheral blood mononuclear cells (PBMC) and the resultant alloreactive response studied. Ex vivo expanded CD25high CD4+ human Treg, which expressed FoxP3, CTLA-4, and CD62L and remained CD127low, were then cotransferred together with human PBMC and islet allografts and monitored for evidence of rejection. RESULTS: Human islets transplanted into diabetic immunodeficient mice reversed diabetes but were rejected rapidly after the mice were reconstituted with allogeneic human PBMC. Cotransfer of purified, ex vivo expanded human Treg prolonged islet allograft survival resulting in the accumulation of Treg in the peripheral lymphoid tissue and suppression of proliferation and interferon-γ production by T cells. In vitro, Treg suppressed activation of signal transducers and activators of transcription and inhibited the effector differentiation of responder T cells. CONCLUSIONS: Ex vivo expanded Treg retain regulatory activity in vivo, can protect a human islet allograft from rejection by suppressing signal transducers and activators of transcription activation and inhibiting T-cell differentiation, and have clinical potential as an adjunctive cellular therapy.

Original publication

DOI

10.1097/TP.0b013e31829fa271

Type

Journal article

Journal

Transplantation

Publication Date

27/10/2013

Volume

96

Pages

707 - 716

Keywords

Adoptive Transfer, Animals, Cell Differentiation, DNA-Binding Proteins, Diabetes Mellitus, Experimental, Disease Models, Animal, Graft Rejection, Graft Survival, Humans, Interferon-gamma, Islets of Langerhans Transplantation, Mice, Mice, Inbred BALB C, Mice, Knockout, Signal Transduction, T-Lymphocytes, Regulatory, Transplantation, Heterologous, Transplantation, Homologous