Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

UNLABELLED: Nanomaterial-mediated delivery represents a promising technique for reproductive biology with a potential to improve the safety and efficacy of existing methodologies, including experimental gene therapy and sperm-mediated gene transfer. Mesoporous silica nanoparticles (MSNPs) have been characterised as a powerful and safe delivery tool, rendering them an excellent candidate for use in reproductive research. However, their effects upon mammalian gametes with highly specialised structure and functionality remain untested. Here, we show for the first time, that spherical MSNPs with hexagonal pore symmetry, functionalised with polyethileneimine and aminopropyltriethoxysilane, and optionally loaded with two common types of cargo (nucleic acid/protein), form strong associations with boar sperm following incubation in vitro and do not exert negative effect upon the main parameters of sperm function, including motility, viability, acrosomal status and DNA fragmentation index. Our findings provide a rationale for the use of MSNPs for the transfer of investigative, diagnostic and/or therapeutic compounds into mammalian sperm. FROM THE CLINICAL EDITOR: Functionalized mesoporous silica nanoparticles (MSNPs) are demonstrated as efficient agents for the transfer of investigative, diagnostic, and/or therapeutic compounds into mammalian sperm. This promising technique has the potential to improve the safety and efficacy of existing methodologies, including experimental gene therapy and sperm-mediated gene transfer.

Original publication

DOI

10.1016/j.nano.2013.10.011

Type

Journal article

Journal

Nanomedicine

Publication Date

05/2014

Volume

10

Pages

859 - 870

Keywords

Delivery, Mesoporous silica, Nanoparticles, Sperm, Toxicity, Animals, DNA Fragmentation, Male, Nanoparticles, Polyethyleneimine, Propylamines, Silanes, Silicon Dioxide, Spermatozoa, Swine