Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a previous study we reported that the immunolabelling of GLUT3, HSP90AA1, and Cu/ZnSOD proteins on boar sperm did not show differences between good and poor freezability ejaculates, in terms of a qualitative analysis based on location and reactivity of these proteins at 17 degrees C and at 240 min post-thaw. Since predicting the ejaculate freezability is considerably important in sperm cryopreservation procedures, the objective of the present study was to quantify the expression of these three proteins in good and poor freezability ejaculates. For this purpose, 10 ejaculates from 9 Piétrain boars were cryopreserved and their sperm quality assessed in the three main steps of the freezing process (17 degrees C, 5 degrees C, and 240 min post-thaw). After this assessment, the 10 ejaculates were clustered for freezability on the basis of their sperm progressive motility and membrane integrity at 240 min post-thaw. From the whole ejaculates, only four good and four poor freezability ejaculates displaying the most divergent values were selected for a western blot assay using sperm samples coming from the three mentioned freezing steps. Protein levels through densitometry were significantly different between good and poor freezability ejaculates for Cu/ZnSOD at 240 min post-thaw (P <or= 0.01) and for HSP90AA1 at 17 degrees C and 5 degrees C (P <or= 0.05). This last finding claims the introduction of tests based on molecular markers in spermatozoa to accurately predict the freezability of ejaculates in order to promote the use of frozen semen on artificial insemination programmes.

Original publication




Journal article



Publication Date





940 - 950


Animals, Cell Survival, Cryopreservation, Ejaculation, Freezing, HSP90 Heat-Shock Proteins, Infertility, Male, Insemination, Artificial, Male, Prognosis, Semen Analysis, Semen Preservation, Spermatozoa, Sus scrofa, Swine, Swine Diseases