Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In an era where we are becoming more reliant on vulnerable kidneys for transplantation from older donors, there is an urgent need to understand how brain death leads to kidney dysfunction and, hence, how this can be prevented. Using a rodent model of hemorrhagic stroke and next-generation proteomic and metabolomic technologies, we aimed to delineate which key cellular processes are perturbed in the kidney after brain death. Pathway analysis of the proteomic signature of kidneys from brain-dead donors revealed large-scale changes in mitochondrial proteins that were associated with altered mitochondrial activity and morphological evidence of mitochondrial injury. We identified an increase in a number of glycolytic proteins and lactate production, suggesting a shift toward anaerobic metabolism. Higher amounts of succinate were found in the brain death group, in conjunction with increased markers of oxidative stress. We characterized the responsiveness of hypoxia inducible factors and found this correlated with post-brain death mean arterial pressures. Brain death leads to metabolic disturbances in the kidney and alterations in mitochondrial function and reactive oxygen species generation. This metabolic disturbance and alteration in mitochondrial function may lead to further cellular injury. Conditioning the brain-dead organ donor by altering metabolism could be a novel approach to ameliorate this brain death-induced kidney injury.

Original publication




Journal article


American Journal of Transplantation


Wiley: 12 months

Publication Date





1421 - 1440


Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK.