Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© Springer International Publishing AG 2016. In this paper, we present a fully automated machine-learning based solution to localize the fetus and extract the best fetal biometry planes for the head and abdomen from 11-13+6days week 3D fetal ultrasound (US) images. Our method to localize the whole fetus in the sagittal plane utilizes Structured Random Forests (SRFs) and classical Random Forests (RFs). A transfer learning Convolutional Neural Network (CNNs) is then applied to axial images to localize one of three classes (head, body and non-fetal). Finally, the best fetal head and abdomen planes are automatically extracted based on clinical knowledge of the position of the fetal biometry planes within the head and body. Our hybrid method achieves promising localization of the best biometry fetal planes with 1.6 mm and 3.4 mm for head and abdomen plane localization respectively compared to the best manually chosen biometry planes.

Original publication

DOI

10.1007/978-3-319-47157-0_24

Type

Conference paper

Publication Date

01/01/2016

Volume

10019 LNCS

Pages

196 - 204